Role of prostaglandin D2 in mast cell activation-induced sensitization of esophageal vagal afferents.
نویسندگان
چکیده
Sensitization of esophageal afferents plays an important role in esophageal nociception, but the mechanism is less clear. Our previous studies demonstrated that mast cell (MC) activation releases the preformed mediators histamine and tryptase, which play important roles in sensitization of esophageal vagal nociceptive C fibers. PGD2 is a lipid mediator released by activated MCs. Whether PGD2 plays a role in this sensitization process has yet to be determined. Expression of the PGD2 DP1 and DP2 receptors in nodose ganglion neurons was determined by immunofluorescence staining, Western blotting, and RT-PCR. Extracellular recordings were performed in ex vivo esophageal-vagal preparations. Action potentials evoked by esophageal distension were compared before and after perfusion of PGD2, DP1 and DP2 receptor agonists, and MC activation, with or without pretreatment with antagonists. The effect of PGD2 on 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled esophageal nodose neurons was determined by patch-clamp recording. Our results demonstrate that DP1 and DP2 receptor mRNA and protein were expressed mainly in small- and medium-diameter neurons in nodose ganglia. PGD2 significantly increased esophageal distension-evoked action potential discharges in esophageal nodose C fibers. The DP1 receptor agonist BW 245C mimicked this effect. PGD2 directly sensitized DiI-labeled esophageal nodose neurons by decreasing the action potential threshold. Pretreatment with the DP1 receptor antagonist BW A868C significantly inhibited PGD2 perfusion- or MC activation-induced increases in esophageal distension-evoked action potential discharges in esophageal nodose C fibers. In conclusion, PGD2 plays an important role in MC activation-induced sensitization of esophageal nodose C fibers. This adds a novel mechanism of visceral afferent sensitization.
منابع مشابه
TRPA1 in mast cell activation-induced long-lasting mechanical hypersensitivity of vagal afferent C-fibers in guinea pig esophagus.
Sensitization of esophageal sensory afferents by inflammatory mediators plays an important role in esophageal nociception. We have shown esophageal mast cell activation induces long-lasting mechanical hypersensitivity in vagal nodose C-fibers. However, the roles of mast cell mediators and downstream ion channels in this process are unclear. Mast cell tryptase via protease-activated receptor 2 (...
متن کاملIntraluminal acid activates esophageal nodose C fibers after mast cell activation.
Acid reflux in the esophagus can induce esophageal painful sensations such as heartburn and noncardiac chest pain. The mechanisms underlying acid-induced esophageal nociception are not clearly understood. In our previous studies, we characterized esophageal vagal nociceptive afferents and defined their responses to noxious mechanical and chemical stimulation. In the present study, we aim to det...
متن کاملProstaglandin D2 receptor D-type prostanoid receptor 2 mediates eosinophil trafficking into the esophagus.
Eosinophilic esophagitis is characterized by eosinophil-predominant inflammation in the esophagus. How eosinophils migrate and infiltrate into the esophagus, however, is less clear. Our previous study demonstrated that mast cell activation led to eosinophil infiltration in the esophagus. Prostaglandin D2 (PGD2) is an important mediator released from activated mast cells. The present study aims ...
متن کاملMast cells contribute to double-stranded RNA-induced augmentation of airway eosinophilia in a murine model of asthma
BACKGROUND Clinical studies showed the contribution of viral infection to the development of asthma. Although mast cells have multiple roles in the pathogenesis of allergic asthma, their role of in the virus-associated pathogenesis of asthma remains unknown. Most respiratory viruses generate double-stranded (ds) RNA during their replication. dsRNA provokes innate immune responses. We recently s...
متن کاملActivation of vagal afferents after intravenous injection of interleukin-1beta: role of endogenous prostaglandins.
Intravenous administration of interleukin-1 (IL-1) activates central autonomic neuronal circuitries originating in the nucleus of the solitary tract (NTS). The mechanism(s) by which blood-borne IL-1 regulates brain functions, whether by operating across the blood-brain barrier and/or by activating peripheral sensory afferents, remains to be characterized. It has been proposed that vagal afferen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 304 10 شماره
صفحات -
تاریخ انتشار 2013